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Abstract

Due to their unique physicochemical properties, graphene-family nanomaterials (GFNs)
are widely used in many fields, especially in biomedical applications. Currently, many
studies have investigated the biocompatibility and toxicity of GFNs in vivo and in intro.
Generally, GFNs may exert different degrees of toxicity in animals or cell models by
following with different administration routes and penetrating through physiological
barriers, subsequently being distributed in tissues or located in cells, eventually being
excreted out of the bodies. This review collects studies on the toxic effects of GFNs in
several organs and cell models. We also point out that various factors determine the
toxicity of GFNs including the lateral size, surface structure, functionalization, charge,
impurities, aggregations, and corona effect ect. In addition, several typical mechanisms
underlying GFN toxicity have been revealed, for instance, physical destruction, oxidative
stress, DNA damage, inflammatory response, apoptosis, autophagy, and necrosis. In these
mechanisms, (toll-like receptors-) TLR-, transforming growth factor β- (TGF-β-) and
tumor necrosis factor-alpha (TNF-α) dependent-pathways are involved in the signalling
pathway network, and oxidative stress plays a crucial role in these pathways. In this
review, we summarize the available information on regulating factors and the mechanisms
of GFNs toxicity, and propose some challenges and suggestions for further investigations
of GFNs, with the aim of completing the toxicology mechanisms, and providing
suggestions to improve the biological safety of GFNs and facilitate their wide application.

Background

Graphene, which is isolated from crystalline graphite, is a flat monolayer composed of
single-atom-thick, two-dimensional sheets of a hexagonally arranged honeycomb lattice
[1]. Because of its unique structural, specific surface area and mechanical characteristics,
the functions and applications of graphene have gained considerable attention since the
discovery of the material in 2004 [2, 3]. Graphene and its derivatives include monolayer
graphene, few-layer graphene (FLG), graphene oxide (GO), reduced graphene oxide
(rGO), graphene nanosheets (GNS), and graphene nanoribbons, etc. [4–7]. GO is one of
the most vital chemical graphene derivatives of the graphene-family nanomaterials
(GFNs), which attracts increasing attention for its potential biomedical applications.
Graphene-based materials usually have sizes ranging from several to hundreds of
nanometer and are 1-10 nm thick [8, 9], which is also the definition of ‘nanoparticles’ or
‘nanomaterials’. Due to their exceptional physical and chemical properties, graphene
materials have been widely used in various fields, including energy storage;
nanoelectronic devices; batteries [10–12]; and biomedical applications, such as
antibacterials [13, 14], biosensors [15–18], cell imaging [19, 20], drug delivery [8, 21, 22],
and tissue engineering [23–25].

Along with the application and production of GFNs increasing, the risk of unintentional
occupational or environmental exposure to GFNs is increasing [26]. And recently, there
are some investigation on GFNs exposure in occupational settings and published data
showed that the occupational exposure of GFNs had potential toxicity to the workers and
researchers [27–29]. GFNs can be delivered into bodies by intratracheal instillation [30],
oral administration [31], intravenous injection [32], intraperitoneal injection [33] and
subcutaneous injection [34]. GFNs can induce acute and chronic injuries in tissues by
penetrating through the blood-air barrier, blood-testis barrier, blood-brain barrier, and
blood-placenta barrier etc. and accumulating in the lung, liver, and spleen etc. For
example, some graphene nanomaterials aerosols can be inhaled and substantial
deposition in the respiratory tract, and they can easily penetrate through the
tracheobronchial airways and then transit down to the lower lung airways, resulting in the
subsequent formation of granulomas, lung fibrosis and adverse health effects to exposed
persons [2, 29]. Several reviews have outlined the unique properties [35, 36] and
summarized the latest potential biological applications of GFNs for drug delivery, gene
delivery, biosensors, tissue engineering, and neurosurgery [37–39]; assessed the
biocompatibility of GFNs in cells (bacterial, mammalian and plant) [7, 40, 41] and animals
(mice and zebrafish) [42]; collected information on the influence of GFNs in the soil and
water environments [43]. Although these reviews discussed the related safety profiles and
nanotoxicology of GFNs, the specific conclusions and detailed mechanisms of toxicity
were insufficient, and the mechanisms of toxicity were not summarized completely. The
toxicological mechanisms of GFNs demonstrated in recent studies mainly contain
inflammatory response, DNA damage, apoptosis, autophagy and necrosis etc., and those
mechanisms can be collected to further explore the complex signalling pathways network
regulating the toxicity of GFNs. It needs to point out that there are several factors which
largely influence the toxicity of GFNs, such as the concentration, lateral dimension,
surface structure and functionalization etc. Herein, this review presents a comprehensive
summary of the available information on the mechanisms and regulating factors of GFNs
toxicity in vitro and in vivo via different experimental methods, with the goals of providing
suggestions for further studies of GFNs and completing the toxicology mechanisms to
improve the biological safety of GFNs and facilitate their wide application.

Toxicity of GFNs (in vivo and in vitro)

GFNs penetrate through the physiological barriers or cellular structures by different
exposure ways or administration routes and entry the body or cells, eventually resulting in
toxicity in vivo and in vitro. The varying administration routes and entry paths, different
tissue distribution and excretion, even the various cell uptake patterns and locations, may
determine the degree of the toxicity of GFNs [44–46]. So to make them clear may be
helpful to better understand the laws of the occurrence and development of GFNs toxicity.

Administration route
The common administration routes in animal models include airway exposure (intranasal
insufflation, intratracheal instillation, and inhalation), oral administration, intravenous
injection, intraperitoneal injection and subcutaneous injection. The major exposure route
for GFNs in the working environment is airway exposure, thus inhalation and
intratracheal instillation are used mostly in mice to simulate human exposure to GFNs.
Though the inhalation method provides the most realistic simulation to real life exposure,
instillation is more effective and time-saving method, and GFNs was found that causing
longer inflammation period using instillation (intratracheal instillation, intrapleural
installation and pharyngeal aspiration) than inhalation [24, 30, 47, 48]. GFNs were
investigated to deposit in the lungs and accumulate to a high level, which retained for
more than 3 months in the lungs with slow clearing after intratracheal instillation [49].
Intravenous injection is also widely used to assess the toxicity of graphene nanomaterials,
and graphene circulates through the body of mice in 30 min, accumulating at a working
concentration in the liver and bladder [32, 50–52]. However, GO derivatives had rather
finite intestinal adsorption and were rapidly excreted in adult mice via oral administration
[31, 53]. Nano-sized GO (350 nm) caused less mononuclear cells to infiltrate subcutaneous
adipose tissue after subcutaneous injection in the neck region compared to micron-sized
GO (2 μm) [34]. GO agglomerated near the injection site after intraperitoneal injection,
and numerous smaller aggregates settled in the proximity of the liver and spleen serosa
[31, 33]. Experiments on skin contact with or skin permeation of GFNs were not found in
the papers reviewed here, and there is insufficient evidence available to conclude that
graphene can penetrate intact skin or skin lesions. The route of nasal drops, which has
been widely used to test the neurotoxicity or brain injury potential of other nanomaterials,
was not mentioned in the papers reviewed here.

GFNs entry paths
GFNs reach various locations through blood circulation or biological barriers after
entering the body, which results in varying degrees of retention in different organs. Due to
their nanosize, GFNs can reach deeper organs by passing through the normal
physiological barriers, such as the blood-air barrier, blood-testis barrier, blood-brain
barrier and blood-placental barrier.

Blood-air barrier
The lungs are a potential entrance for graphene nanoparticles into the human body
through airway. The inhaled GO nanosheets can destroy the ultrastructure and
biophysical properties of pulmonary surfactant (PS) film, which is the first line of host
defense, and emerge their potential toxicity [54]. The agglomerated or dispersed particles
deposit on the inner alveolar surface within the alveoli and then be engulfed by alveolar
macrophages (AMs) [55]. Clearance in the lungs is facilitated by the mucociliary escalator,
AMs, or epithelial layer [56–58]. However, some small, inhaled nanoparticles infiltrate
the intact lung epithelial barrier and can then transiently enter the alveolar epithelium or
the interstitium [59, 60]. Intratracheally instilled graphene can redistribute to the liver
and spleen by passing through the air-blood barrier [61]. The study of blood-air barrier
may draw an intensive attention, since the researchers and workers occupational exposure
of GFNs usually through inhalation. To make clear how the blood-air barrier plays a role
in the toxicity of GFNs may become a research hot topic.

Blood-brain barrier
The intricate arrangement of the blood-brain barrier, consisting of numbers of membrane
receptors and highly selective carriers, only exerts subtle influence on blood circulation
and the brain microenvironment compared to the peripheral vascular endothelium [62].
The research on the mechanism of blood-brain barrier had made some progress involved
in diseases and nanotoxicity. Matrix-assisted laser desorption/ionization (MALDI) mass
spectrometry imaging (MSI) revealed that rGO, with an average diameter of 342 ± 
23.5 nm, permeated through the paracellular pathway into the inter-endothelial cleft in a
time-dependent manner by decreasing the blood-brain barrier paracellular tightness [63].
In addition, graphene quantum dots (GQDs), with a small size of less than 100 nm, can
cross through the blood-brain barrier [64]. Studies on how graphene materials pass
through the blood-brain barrier and cause neurotoxicity are very rare, and more data are
needed to draw a conclusion.

Blood-testis barrier
The blood-testis and blood-epididymis barriers are well known for being some of the
tightest blood-tissue barriers in the mammalian body [65]. GO particles with diameters of
54.9 ± 23.1 nm had difficulty penetrating the blood-testis and blood-epididymis barriers
after intra-abdominal injection, and the sperm quality of the mice was not obviously
affected even at 300 mg/kg dosage [66].

Blood-placenta barrier
The placental barrier is indispensable in maintaining pregnancy, as it mediates the
exchange of nutrients and metabolic waste products, exerts vital metabolic functions and
secretes hormones [67]. A recent review suggested that the placenta does not provide a
tight barrier against the transfer of nanoparticles to foetuses, specifically against the
distribution of carbonaceous nanoparticles to and in the foetus [42]. It was suggested that
rGO and gold particles (diameter of 13 nm) are barely present or are absent in the placenta
and foetus in late gestation after intravenous injection [44, 68]. However, other reports
showed that transplacental transfer does occur in late gestational stages [69, 70]. Much
attention had been paid to the developmental toxicity of nanomaterials, and reports
showed that many nanoparticles did cross the placental barrier and strongly influenced
the development of embryos [71–75]. But studies of the exposure to graphene materials
through the placenta barrier are deficient, and how these particles transfer to embryos
should be evaluated in detail in the future.

These four barriers were the most frequently mentioned barriers in the literature, and
other barriers have not been evaluated in recent studies, such as skin barriers, which have
not been mentioned in any of the hundreds of GFNs toxicity studies searched. Moreover,
the mechanism by which GFNs pass through these barriers is not well understood, and
more systematic investigations are urgently needed.

Distribution and excretion of GFNs in tissue
The absorption, distribution, and excretion of graphene nanoparticles may be affected by
various factors including the administration routes, physicochemical properties, particle
agglomeration and surface coating of GFNs.

The different administration routes influence the distribution of GFNs, for example,
intratracheally instilled FLG passing through the air-blood barrier mainly accumulated
and was retained in the lungs, with 47 % remaining after 4 weeks [61]. Intravenously
administered GO entered the body through blood circulation and was highly retained in
the lung, liver, spleen and bone marrow, and inflammatory cell infiltration, granuloma
formation and pulmonary edema were observed in the lungs of mice after intravenous
injection of 10 mg kg/body weight GO [49]. Similarly, high accumulation of PEGylated GO
derivatives was observed in the reticuloendothelial (RES) system including liver and
spleen after intraperitoneal injection. In contrast, GO-PEG and FLG did not show
detectable gastrointestinal tract absorption or tissue uptake via oral administration [31].

The different properties of GFNs, such as their size, dose and functional groups, always
lead to inconsistent results in the distribution profiles of graphene. For instance, Zhang et
al. found that GO was mainly entrapped in mouse lungs [49]; however, Li et al. observed
that GO accumulated in mouse liver [76]. Notably, small GO sheets, with diameters of 10–
30 nm, were mainly distributed in the liver and spleen, whereas larger GO sheets (10–
800 nm) mainly accumulated in the lungs [49, 52, 77]. If the size of GO is larger than the
size of the vessels, GO usually becomes stuck in the arteries and capillaries in the
proximity of the injection site. The accumulation of GO in the lungs was shown to increase
with an increase in the injected dose and size, but that in the liver significantly decreased
[78]. Coating biocompatible polymers onto GO also affects the biodistribution, for
instance, the intravenous injection of GO-PEG and GO-dextran (GO-DEX) accumulate in
the reticuloendothelial system (RES), including the liver and spleen, without short-term
toxicity [31, 79]. Moreover, the charge of plasma proteins and adsorption of GO by plasma
proteins also affects the biodistribution [34].

The excretion and clearance of GFNs vary in different organs. In the lungs, observations
indicated that NGO is drawn into and cleared by AMs, which might be eliminated from the
sputum through mucociliary clearance or other ways [57], and 46.2 % of the
intratracheally instilled FLG was excreted through the faeces 28 d after exposure [61]. In
the liver, nanoparticles can be eliminated thorough the hepato-biliary pathway following
the biliary duct into the duodenum [80]. In addition, PEGylated GNS that mainly
accumulates in the liver and spleen can be gradually cleared, likely by both renal and
faecal excretion. As recently reviewed, GO sheets larger than 200 nm are trapped by
splenic physical filtration, but small sizes (approximately 8 nm) can penetrate the renal
tubules into the urine and be rapidly removed without obvious toxicity [81]. The excretion
paths of GFNs have not yet been clearly explained, but renal and faecal routes appear to be
the main elimination routes for graphene.

Recently, the distribution and excretion/toxicity strategy has become an important part of
nano-toxicological studies. To date, several controversial results regarding the distribution
and excretion of graphene in vivo have been reported in several papers, and a systematic
evaluation of the toxicokinetics of GFNs is still needed. The metabolism and excretion of
nanomaterials are long-period processes, however, the recent studies of GFNs had been
limited to short-term toxicological assessments, and the long-term accumulation and
toxicity of GFNs on different tissues remain unknown. Therefore, long-term studies on the
deposition and excretion of GFNs need to be performed using different cells and animals
to ensure the materials’ biosafety before utilization in human biomedical applications.

Uptake and location of GFNs in cells
The uptake and location of GFNs have also been observed to exert different effects in
different cell lines. Graphene is taken up into cells via various routes [82, 83]. Basically,
the physicochemical parameters such as the size, shape, coating, charge, hydrodynamic
diameter, isoelectric point, and pH gradient are important to allow GO to pass through the
cell membrane [84]. As stated previously, nanoparticles with diameters <100 nm can
enter cells, and those with diameters <40 nm can enter the nucleus [85]. For example,
GQDs possibly penetrate cell membranes directly, rather than through energy-dependent
pathways [86, 87]. Larger protein-coated graphene oxide nanoparticles (PCGO) (~1 μm)
enter cells mainly through phagocytosis, and smaller PCGO nanoparticles (~500 nm)
enter cells primarily through clathrin-mediated endocytosis [88]. GO sheets could adhere
and wrap around the cell membrane, insert in the lipid bilayer or be internalized into the
cell as a consequence of interactions with cells [89]. Similarly, PEGylated reduced
graphene oxide (PrGO) and rGO were shown to adhere onto the lipid bilayer cell
membrane prominently due to the interaction of hydrophobic, unmodified graphitic
domains with the cell membrane [90, 91]. Consequently, it was suggested that prolonged
exposure to or a high concentration of graphene induces physical or biological damage to
the cell membrane, along with destabilization of actin filaments and the cytoskeleton [92].

Current data demonstrates that GO sheets interact with the plasma membrane and are
phagocytosed by macrophages. Three major receptors on macrophages take part in the
phagocytosis of GNS: the Fcg receptor (FcgR), mannose receptor (MR), and complement
receptor (CR). Furthermore, FcgR is a key receptor in the mediated phagocytic pathway
[90, 93, 94]. The protein corona of GO promotes the recognition by macrophage
receptors, especially the IgG contained within the protein corona. Macrophages were
observed to undergo prodigious morphological changes upon contact with GO [34]. After
internalization, graphene accumulated in the cell cytoplasm, perinuclear space, and
nucleus, which induced cytotoxicity in murine macrophages by increasing intracellular
ROS through depletion of the mitochondrial membrane potential and by triggering
apoptosis through activation of the mitochondrial pathway [83]. The possible interactions
and accumulation sites of GFNs are summarized in Fig. 1.

Fig. 1

Graphene materials and their biological interactions. (A) A parameter space for the most widely
used graphene materials can be described by the dimensions and surface functionalization of the
material, the latter defined as the percentage of the carbon atoms in sp3 hybridization. Green
squares represent epitaxially grown graphene; yellow, mechanically exfoliated graphene; red,
chemically exfoliated graphene; blue, graphene oxide. Note that a number of other graphene-
related materials (such as graphene quantum dots and graphene nanoribbons) are also being
used in experiments. (B) Possible interactions between graphene-related materials with cells (the
graphene flakes are not to scale). (a) Adhesion onto the outer surface of the cell membrane. (b)
Incorporation in between the monolayers of the plasma membrane lipid bilayer. (c)
Translocation of membrane. (d) Cytoplasmic internalization. (e) Clathrin-mediated endocytosis.
(f) Endosomal or phagosomal internalization. (g) Lysosomal or other perinuclear compartment
localization. (h) Exosomal localization. The biological outcomes from such interactions can be
considered to be either adverse or beneficial, depending on the context of the particular
biomedical application. Different graphene-related materials will have different preferential
mechanisms of interaction with cells and tissues that largely await discovery. [90] Copyright
(2014), with permission from American Association for Advancement of Science
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Toxicity of GFNs in organs
The toxicity and biocompatibility of GFNs has been observed and assessed through
theoretical and animal model studies. At present, there are a mass of data demonstrating
the toxicity of GFNs in different organs or systems in animals, so that it is hard to list all
the data in this review. Thus we summarized a certain number literature and chose some
in vivo toxicological studies of GFNs listed in Table 1.

Table 1 Toxicity of GFNs in organs

Full size table

Toxicity in internal organs
GO can result in acute inflammation response and chronic injury by interfering with the
normal physiological functions of important organs [32, 81]. Oral gavage experiments did
not show detectable absorption of GO through the gastrointestinal tract [95]. Interesting,
a low dose of GO caused serious damage to the gastrointestinal tract after maternal mice
drank a GO suspension rather than a high-dose of GO because a low dose of GO without
agglomeration can easily attach to the gastrointestinal surface and cause destruction
through its abundant sharp edges [53]. GFNs caused inflammation and remained in the
lung on day 90 after a single intratracheal instillation, and even translocated to lung
lymph nodes by a nose-only inhalation [96, 97]. A high dose of GO that forms
aggregations can block pulmonary blood vessels and result in dyspnea [50, 98], and
platelet thrombi were observed at high concentrations of 1 and 2 mg/kg body weight via
intravenous injection [89]. GO reportedly disrupted the alveolar-capillary barrier,
allowing inflammatory cells to infiltrate into the lungs and stimulate the release of pro-
inflammatory cytokines [99]. Fibrosis and inflammation could be verified by the increased
levels of the protein markers collagen1, Gr1, CD68 and CD11b in the lungs. The use of
Tween 80 to disperse FLG or a pluronic surfactant to disperse graphene was suggested to
reduce the likelihood of lung fibrosis formation in cells or mice, whereas lung fibrosis was
observed when graphene was suspended with bovine serum albumin (BSA) [100]. In
addition, radioactive isotopes can be delivered into the lungs, accompanied by a depth
distribution of I-NGO in the lungs, and the isotopes might deposit there and result in
mutations and cancers [30]. However, recent publications claimed no obvious
pathological changes in mice exposed to low dosages of GO and functionalized graphene
by intravenous injection, including aminated GO (GO-NH2), poly(acrylamide)-
functionalized GO (GO-PAM), poly(acrylic acid)-functionalized GO (GO-PAA) and GO-
PEG; only GO-PEG and GO-PAA induced less toxicity than pristine GO in vivo [31, 79,
89]. So the functional groups of GFNs and the working concentration or aggregate state
largely influence the toxicity of GFNs. Recently, the ways to modify the functional group of
GFNs, decrease the working concentration or change the aggregate condition are usually
used to decrease the toxicity of GFNs.

Toxicity in the central nervous system
Graphene has largely benefited neurosurgery with the application of drug/gene delivery
for brain tumour treatment, intracranial and spinal biocompatible devices, biosensing and
bioimaging techniques. Studies regarding the potentialities or risks of graphene in the
brain have emerged. In the chicken embryo model, pristine graphene flakes decreased the
ribonucleic acid level and the rate of deoxyribonucleic acid synthesis, leading to harmful
effects on brain tissue development and the atypical ultrastructure was observed in the
brain [101]. The recent researches of GFNs in the central nervous system are mostly
involved in the application rather than the toxicity. The data of the toxic study on GFNs is
underway.

Toxicity in reproduction and development system
Pristine graphene reduced the vascularization of the heart and the density of branched
vessels after injection into fertilized chicken eggs followed by incubation for 19 d [101]. GO
and rGO damage zebrafish embryos by influencing the embryo hatching rate and body
length in a concentration-dependent manner. Although no obvious malformation or
mortality was observed in exposed zebrafish embryos [102], GO adhered to and was
wrapped in the chorion of the zebrafish embryos, causing remarkable hypoxia and
hatching delay. GO aggregates were retained in many organelles, such as the eyes, heart,
yolk sac, and tail of the embryos, and apoptosis and reactive oxygen species (ROS)
generation were observed in these regions [103].

The GFNs exert different toxicological effects on male or female reproductive system. Data
showed that GO exerted very low or nearly no toxic effects on male reproduction even at a
high dose via intra-abdominal injection [66]. Additionally, rGO did not change the serum
estrogen levels of non-pregnant female mice. The condition is different in the female
mouse: mouse dams could give birth to healthy offspring after rGO injection before
mating or during early gestation, and only a few abnormal foetuses were present among
the rGO-injected dam litters. However, the pregnant mice had abortions at all dose, and
most pregnant mice died when the high dose of rGO was injected during late gestation
[44]. Notably, the development of offspring in the high dosage group was delayed during
the lactation period. The high dose of GO decreased the maternal mice’s water
consumption by oral exposure, which reduced milk production and thus postponed the
growth of offspring [53]. Though the findings indicate that GFNs are potentially harmful
to development, but data on reproductive and developmental toxicity are still deficient.
Studies of the influence of GFNs on male and female reproduction and development are
still required to elucidate the underlying toxicity mechanism.

Influence of haemocompatibility
GO release into the blood is ineluctable. The haemocompatibility of GO was found to be
dependent on the functional coating and the exposure conditions. GO with submicron size
resulted in the greatest haemolytic activity, while aggregated graphene induced the lowest
haemolytic reaction. Pristine graphene and GO demonstrated haemolytic effect up to
75 μg/mL [104]. GO-polyethylenimine (GO-PEI) exhibited notable toxicity by binding to
HSA, even at 1.6 μg/mL [105]. Carboxylated graphene oxide (GO-COOH) showed
significant cytotoxicity toward T lymphocytes at concentrations above 50 μg/mL and had
good biocompatibility below 25 μg/mL, whereas GO-chitosan nearly inhibited haemolytic
activity [106]. Until now, the corresponding risk of haemocompatibility has remained
largely unknown.

In conclusion, the lung injury induced by GFNs has been studied in several studies, the
results of which have demonstrated inflammatory cell infiltration, pulmonary edema and
granuloma formation in the lungs. However, only a few specific studies have evaluated in
other organs, such as the liver, spleen, and kidney, and the injury symptoms, damage
index and level of damage to these internal organs were not fully investigated. Moreover,
studies on the neurotoxicity of GFNs are quite rare; no data has revealed which nerves or
brain areas experience damage, nor have the related behavioural manifestations been
studied. The developmental toxicity of GFNs may induce structural abnormalities, growth
retardation, behavioural and functional abnormalities, and even death. A study on the
reproductive and developmental toxicity of GFNs will be extremely significant and gain
extensive attention in the future. Almost all the GFNs toxicity studies were short-period
experiments, and no studies have investigated long-term chronic toxic injury. However,
based on studies of other nanomaterials toxicity, long-term GFNs exposure may be an
important factor harming health [107–109]. Therefore, the long-term study of GFNs is
necessary.

Toxicity of GFNs in cell models
The cytotoxicity of GFNs in vitro has been verified in various cells to change the cell
viability and morphology, destroy the membrane integrity, and induce DNA damage [110–
112]. GO or rGO decrease cell adhesion; induce cell apoptosis; and enter lysosomes,
mitochondria, cell nuclei, and endoplasm [113]. GQDs entered cells and induced DNA
damage by the increased expression of p53, Rad 51, and OGG1 proteins in NIH-3 T3 cells
[87]. However, GQDs did not pose significant toxicity to human breast cancer cell lines (at
a dose of 50 μg/mL) or human neural stem cells (at a dose of 250 μg/mL) [114, 115]. GO
derivatives dramatically decreased the expression of differential genes that are responsible
for the structure and function of the cell membrane, such as regulation of the actin
cytoskeleton, focal adhesion and endocytosis [89]. In rat pheochromocytoma cells (PC12
cells), graphene and rGO caused cytotoxic effects and mitochondrial injury, such as the
release of lactate dehydrogenase (LDH), an increase in the activation of caspase-3, and the
generation of ROS [82, 116].

Graphene can increase cell viability [117] or cause cell death [118] depending on the cell
line, type of graphene material and the doseage. GO cytotoxicity was observed in human
fibroblasts and lung epithelial cells at concentrations above 20 μg/mL after 24 h, but
minimal toxicity was found in A549 cells at concentrations higher than 50 μg/mL [119].
The biological responses induced by GO such as ROS, malondialdehyde (MDA), and LDH
increased, whereas superoxide dismutase (SOD) decreased dose-dependently in HeLa
cells [120]. However, GO-molecular beacon (GO-MB) showed low cytotoxicity even at
20 μg/mL in HeLa cells [121]. GO decreased the viability of A549 cells, while the same
concentration and time of exposure increased the cell viability of CaCo2 colorectal
carcinoma cells [122]. Another study reported that GO dramatically enhanced the
differentiation of SH-SY5Y, accompanied by increasing neurite length and the expression
of neuronal marker MAP2 at low concentrations but that GO suppressed the viability of
SH-SY5Y cells at high doses (≥80 mg/mL) [123]. Functionalized coatings on GO, such as
GO-PEG [124] and GO-chitosan [125], can profoundly attenuate the particles’ cytotoxicity
by inhibiting the interactions between cells.

The toxicity of GFNs in vitro is summarized in Table 2. Data on the cytotoxicity of
graphene nanomaterials are contrasting, and varying characteristics influence the results.
The mechanisms and influencing factors of toxicity need to be elucidated in detail.

Table 2 Toxicity of GFNs in cell models

Full size table

Origins of GFNs toxicity

Reportedly, the characteristics of graphene, including its concentration, lateral dimension,
surface structure, functional groups, purity and protein corona, strongly influence its
toxicity in biological systems [2, 7, 104, 126–129].

Concentration
Numerous results have shown that graphene materials cause dose-dependent toxicity in
animals and cells, such as liver and kidney injury, lung granuloma formation, decreased
cell viability and cell apoptosis [130–134]. In vivo studies, GO did not exhibit obvious
toxicity in mice exposed to a low dose (0.1 mg) and middle dose (0.25 mg) but induced
chronic toxicity at a high dose (0.4 mg). The high content of GO mainly deposited in the
lungs, liver, spleen, and kidneys and was difficult to be cleaned by the kidneys via a single
tail vein injection [135]. Intriguingly, increasing the dose resulted in a dramatic decrease
in the hepatic uptake but an increase in the pulmonary uptake of s-GO by intravenous
injection [31], because the high dose of GO potentially surpassed the uptake saturation or
depleted the mass of plasma opsonins, which consequently suppressed the hepatic uptake.
Moreover, an in vitro study reported that 20 μg/mL GO nanosheets exhibited no
cytotoxicity in A549 within 2 h of incubation, but a higher concentration (85 μg/mL)
decreased the cell viability to 50 % within 24 h [136, 137]. Lü et al. also demonstrated that
GO had no obvious cytotoxicity at low concentrations for 96 h in a human neuroblastoma
SH-SY5Y cell line, but the viability of cells sharply decreased to 20 % after treatment with
100 mg/mL GO for 96 h of incubation [123]. The results in HeLa cells, NIH-3 T3 cells, and
breast cancer cells (SKBR3, MCF7) treated with graphene nanoribbons also showed a
dose- (10–400 mg/ml) and time-dependent (12–48 h) decrease in cell viability [138].
Increasing concentrations of GO entered the lysosomes, mitochondria, endoplasm, and
cell nucleus [119]. Several data indicated that rGO caused apoptosis-mediated cell death at
a lower dose and early time point but that necrosis was prevalent with the increase in
time/dose [110, 135].

Lateral dimension
Nanoparticles with sizes <100 nm can enter the cell, <40 nm can enter nucleus, and
smaller than <35 nm can cross the blood brain barrier [85]. One study showed that GO
(588, 556, 148 nm) did not enter A549 cells and had no obvious cytotoxicity [112]. When
the diameter of graphene is between 100 ~ 500 nm, the smallest size may cause the most
severe toxicity, and when the diameter is below 40 nm, the smallest sizes may be the
safest. For instance, rGO with a diameter of 11 ± 4 nm could enter into the nucleus of the
hMSCs and cause chromosomal aberrations and DNA fragmentation at very low
concentrations of 0.1 and 1.0 mg/mL in 1 h. However, rGO sheets with diameters of 3.8 ± 
0.4 nm exhibited no notable genotoxicity in hMSCs even at a high dose of 100 mg/mL
after 24 h [118].

In an in vivo study, s-GO (100–500 nm) preferentially accumulated in the liver, whereas l-
GO (1–5 μm) was mainly located in the lungs because l-GO formed larger GO-protein
complexes that were filtered out by the pulmonary capillary vessels after intravenously
injection [31]. Given the relative lateral sizes (205.8 nm, 146.8 nm and 33.78 nm) of the
three GO nanosheets at the same concentration, smaller GO experiences much greater
uptake than larger GO in Hela cells [139]. The high uptake of s-GO changed in the
microenvironment of cells and consequently induced the greatest viability loss and most
serious oxidative stress among three sizes of GO samples [119]. As a result, one study
delineated that GO size-dependently induced the M1 polarization of macrophages and
pro-inflammatory responses in vitro and in vivo. Larger GO showed stronger adsorption
onto the plasma membrane with less phagocytosis, eliciting robust interactions with TLRs
and activating NF-κB pathways, compared to smaller GO sheets, which were more likely
taken up by cells [94]. To further uncover the detailed mechanism underlying these
effects, more studies are needed to illustrate the vital mechanism of the lateral size of
graphene materials.

Surface structure
GFNs possess widely varying surface chemistries. For example, the pristine graphene
surface is hydrophobic, GO surface is partially hydrophobic with carboxylate groups [140–
142], and rGO has intermediate hydrophilicity [143]. GFNs were observed to disrupt the
function and structure of cell membranes and proteins probably by exceptionally strong
molecular interactions with cells [2, 91]. For instance, rGO bonded to cell membranes,
stimulated receptors and activated mitochondrial pathways, inducing apoptosis [110, 111,
144]. Limited evidence showed that GO is smaller and less toxic than rGO because of the
high oxygen content, smoother edges, and hydrophilic properties of the former species
[104, 145, 146]. Because of the different surface oxidation states of GO and rGO, GO
possessing distinct hydrophilicity might be internalized and taken up by HepG2 cells
easily. On the contrary, rGO with evident hydrophobicity, could be adsorbed and
aggregated at cell surfaces without (or with lower) uptake [110]. Due to strong π-π
stacking interactions, graphene is highly capability of breaking many residues of the
protein, particularly the aromatic ones, such as the villin headpiece (HP), F10, W23, and
F35. The protein’s secondary and tertiary structures are largely lying on the graphene
surface, disrupting the structure and function of the protein [41] (Fig. 2). In addition, GO
can insert between the base pairs of double-stranded DNA and disturb the flow of genetic
information at the molecular level, which might be one of the main causes of the
mutagenic effect of GO [7, 112, 146, 147].

Fig. 2

A representative trajectory of HP35 adsorbing onto the graphene. (a) Representative snapshots
at various time points. The proteins are shown in cartoons with red helix and green loop, and the
graphene is shown in wheat. The aromatic residues that form the π-π stacking interactions are
shown in blue, others are shown in green. (b) The contacting surface area of HP35 with the
graphene. (c) The RMSD of HP35 from its native structure and the number of residues in the α-
helix structure. Here, the secondary structures are determined by the DSSP program. (d) The
distance between the graphene and the aromatic residues, including F35, W23, F10, F17, and
F06. To show the adsorbing process clearer, the χ-axis had been truncated and rescaled. [41]
Copyright (2011), with permission from Journal of Physical of Chemistry
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Charge
A number of studies have highlighted the importance of the GO surface charge because of
its ability to affect the internalization and uptake mechanism of cells [148–150]. GO
internalization was negligible in non-phagocytes, which was likely due to the strong
electrostatic repulsion between the negatively charged GO and the cell surface [34].
However, others have suggested that negatively charged nanoparticles can be internalized
into non-phagocytic cells by binding to available cationic sites on the cell surface and be
taken up by scavenger receptors [110, 146, 150]. GO/GS particles reportedly cause
morphological changes and significant lysis, leading to high haemolysis in red blood cells
(RBCs). RBC membrane disruption is probably attributed to the strong electrostatic
interactions between the negatively charged oxygen groups on the GO/GS surface and
positively charged phosphatidylcholine lipids on the RBC outer membrane [106].

Functionalization
Studies confirmed that functionalization with PEG [52], PEGylated poly-L-lysine (PLL)
[151], poly(ε-caprolactone) [152], polyvinyl alcohol [3], Pluronic [153], amine [98],
carboxyl, and dextran [79] groups largely decreases the toxicity and improves the
biocompatibility of graphene. In vivo results revealed that only mild chronic inflammation
emerged after the subcutaneous injection of GO-Pluronic hydrogel and no noticeable
short-term toxicity was tested after the intravenous injection of GO-DEX [79, 154].
PEGylated GS did not induce appreciable toxicity in mice exposed to 20 mg/kg for
3 months, as evaluated by blood biochemistry and histological examinations, and showed
relatively low retention in the RES [52, 155]. Coating GO with chitosan almost eliminated
the haemolytic activity in blood [39]. Moreover, the PEG coating effectively alleviated GO-
induced acute tissue injuries; decreased GO aggregation and retention in the liver, lungs,
and spleen; and promoted the clearance of GO [81], GO-DEX [79], and fluorinated
graphene oxide (FGO) [156].

In vitro, several cell function assays showed clear evidence that the surface
functionalization of pristine graphene or GO was critical for reducing the strong toxicity
effects [91]. PEG-GO, PEI-GO and LA-PEG-GO damaged human lung fibroblast cells less
than GO [148]. PEG-GO exhibited no cytotoxicity toward several cell cultures, such as
glioblastoma cells (U87MG), breast cancer cells (MCF-7), human ovarian carcinoma cells
(OVCAR-3), colon cancer cells (HCT-116), and lymphoblastoid cells (RAJI), at
concentrations up to 100 μg/mL [119, 157, 158]. GQDs-PEG exhibited very low or no
toxicity against lung and cervical cancer cells even at very high concentrations
(200 μg/mL) [159]. However, as a non-biodegradable material with great potential for
cellular internalization, further investigation is needed to assess the possible long-term
adverse effects of functionalized graphene.

Aggregations and sedimentation
Reportedly, nanomaterials have a propensity to form aggregates rather than individual
units, particularly under physiological conditions. GS surfaces allowed fewer RBCs attach
comparing to GO, and GS had the lower haemolytic activity for more aqueous
aggregations formation. In contrast, the fast sedimentation and aggregate formation of GS
greatly inhibited the nutrient availability of human skin fibroblast cells that were grown
on the bottom of wells [106]. Therefore, the aggregations and sedimentation of graphene
particles exert varying effects on different cells.

Impurities
Nanomaterial purity is an important consideration because residual, contaminating
metals may be responsible for the observed toxicity, rather than the nanomaterial itself,
which has resulted in conflicting data on GFNs cytotoxicity [35, 160]. Traditionally
prepared GO often contains high levels of Mn  and Fe , which are highly mutagenic to
cells. The nonspecific release of these ions from traditionally prepared GO might lead to
unusually high levels of cytotoxicity and DNA fracturing [39]. In particular, Peng et al.
[161] produced high-purity GO containing only 0.025 ppm Mn  and 0.13 ppm Fe , and
Hanene et al. [162] invented a new method to prepare high-purity, single-layer GO sheets
with good aqueous dispersibility and colloidal stability. GO produced by these new
methods did not induce significant cytotoxic responses (at exposure doses up to
100 μg/mL) in vitro, and no obvious inflammatory response or granuloma formation
(exposure doses up to 50 μg/animal) were observed in vivo. Therefore, the purity of GFNs
deserves attention and is a vital step towards the determination of GFNs involved in
bioapplications.

Protein corona effect
Because of the high free surface charge, nanomaterials can easily form “coronas” with
proteins in biological systems [163, 164]. The protein corona is suggested to affect the
circulation, distribution, clearance and toxicity of nanoparticles. Several papers reported
that GO forms GO-protein coronas with adsorbed plasma proteins in serum and these GO-
protein coronas play an important role in deciding the fate of the GO biokinetic behaviour
in vivo. Such GO-protein coronas can regulate the adhesion of GO to endothelial and
immune cells through both specific and nonspecific interactions [165]. Basically,
immunoglobulin G and complement proteins in the protein corona help to reorganize
nanoparticles in immune cells, causing the particles to be engulfed by the RES, and IgG-
coated GO was taken up by either specific or nonspecific interactions with cell membrane
receptors [31, 165]. However, another study found that GO could not adhere to mucosal
epithelial cells directly in the intestinal tract after the filial mice drank an aqueous GO
solution because abundant proteins in the milk had adsorbed on the surface of the GO and
thus inhibited their direct interaction with the mucosal epithelial cells [53]. Protein corona
mitigated the cytotoxicity of GO by limiting its physical interaction with the cell
membrane and reducing the cellular morphological damage in HeLa, THP-1 and A549
cells [166–168]. The cytotoxic effect was largely reduced when GO was pre-coated with
FBS and incubated with cells; nearly ∼ 90 % survival was observed with 100 μg/mL FBS-
coated GO and 100 % survival with 20 μg/mL FBS-coated GO. Similar trends were
observed for GO covered by BSA [166, 169]. Consistently, additional serum could
neutralize the toxicity of pristine GO in J774.A1 cells at a dose of 4 μg/mL, which lead to a
decrease in cell number of 52.5 % compared to untreated cells [89].

After reviewing many studies, it can be concluded that the toxicity of graphene is
influenced by multiple factors. Those factors combined to largely change the toxicity of
GFNs in many cases. Scientific studies often need the clear identification of cause and
effect, which should keep only one factor different at a time, so that the effect of that single
factor can be determined. But in some papers, several factors influencing GFNs toxicity
were studied at the same time, which led to confused results.

Possible toxicity mechanisms of GFNs

Although some physicochemical properties and the toxicity of GFNs have been well
studied by many scholars, the exact mechanisms underlying the toxicity of GFNs remain
obscure. A schematic of the main mechanisms of GFNs cytotoxicity is illustrated in Fig. 3.

Fig. 3

Schematic diagram showed the possible mechanisms of GFNs cytotoxicity. GFNs get into cells
through different ways, which induce in ROS generation, LDH and MDA increase, and Ca
release. Subsequently, GFNs cause kinds of cell injury, for instance, cell membrane damage,
inflammation, DNA damage, mitochondrial disorders, apoptosis or necrosis
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Physical destruction
Graphene is a unique nanomaterial compared with other spherical or one-dimensional
nanoparticles due to its two-dimensional structure with sp2-carbons. The physical
interaction of graphene nanoparticles with cell membranes is one of the major causes of
graphene cytotoxicity [7, 170, 171]. Graphene has high capability to bind with the α-helical
structures of peptides because of its favourable surface curvature [172]. At concentration
above 75 μg/mL, pristine graphene largely adhered to the surfaces of RAW 264.7 cells and
resulted in abnormal stretching of the cell membrane [104]. The strong hydrophobic
interactions of GFNs with the cell membrane lead to the morphological extension of F-
actin filopodial and cytoskeletal dysfunction. Furthermore, the sharpened edges of GNS
may act as ‘blades’, inserting and cutting through bacterial cell membranes [173].
Moreover, GO also damaged the outer membrane of E. coli bacteria directly, resulting in
the release of intracellular components [173]. However, TEM imaging revealed that pre-
coating GO with FBS eliminated the destruction of cell membranes [166].

ROS production leading to oxidative stress
Oxidative stress arises when increasing levels of ROS overwhelm the activity of
antioxidant enzymes, including catalase, SOD, or glutathione peroxidase (GSH-PX) [174].
ROS act as second messengers in many intracellular signalling cascades and lead to
cellular macromolecular damage, such as membrane lipid breakdown, DNA
fragmentation, protein denaturation and mitochondrial dysfunction, which greatly
influence cell metabolism and signalling [175–177]. The interactions of GO with cells can
lead to excessive ROS generation, which is the first step in the mechanisms of
carcinogenesis, ageing, and mutagenesis [83, 122]. Oxidative stress had a significant role
in GO-induced acute lung injury [30], and the inflammatory responses caused by
oxidative stress often emerged upon exposure to GFNs [133, 177, 178]. The activity of SOD
and GSH-PX decreased after exposed to GO in a time- and dosage-dependent manner [82,
106, 119]. Similarly, oxidative stress was the key cause of apoptosis and DNA damage after
HLF cells were exposed to GO [148]. Both the mitogen-activated protein kinase (MAPK)
(JNK, ERK and p38) and TGF-beta-related signalling pathways were triggered by ROS
generation in pristine graphene-treated cells, accompanied by the activation of Bim and
Bax, which are two pro-apoptotic members of the Bcl-2 protein family. As a result,
caspase-3 and its downstream effector proteins such as PARP were activated, and
apoptosis was initiated [83, 179]. Detailed information regarding the MAPK-, TGF-β- and
TNF-α-related signalling pathways, which induce inflammation, apoptosis and necrosis,
are summarized in Fig. 4.

Fig. 4

Schematic diagram of MAPKs, TGF-beta and TNF-α dependent pathways involved in GFNs
toxicity. ROS was the main factors activating the MAPKs and TGF-beta signaling pathways to
lead to the activation of Bim and Bax, triggering the cascade of caspases and JNK pathway. The
activation of caspase 3 and RIP1 resulted in apoptosis and necrosis finally
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Mitochondrial damage
Mitochondria are energy production centres involved in various signalling pathways in
cells and are also a key point of apoptotic regulation [83]. After exposure to GO and
carboxyl graphene (GXYG), the mitochondrial membrane was depolarized, and the
amount of mitochondria decreased in HepG2 cells [180]. Exposure to GFNs resulted in
significantly increased coupled and uncoupled mitochondrial oxygen consumption,
dissipation of the mitochondrial membrane potential, and eventual triggering of apoptosis
by activating the mitochondrial pathway [181]. For instance, GO increased the activity of
mitochondrial electron transport complexes I/III and the supply of electrons to site I/II of
the electron transport chain, accelerating the generation of ROS during mitochondrial
respiration in MHS cells [99]. The formation of •OH mediated by GO and the cytochrome-
c/H O  electron-transfer system could enhance oxidative and thermal stress to impair the
mitochondrial respiration system and eventually result in dramatic toxicity [151].
Additionally, the oxygen moieties on GO might accept electrons from cellular redox
proteins, supporting the redox cycling of cytochrome c and electron transport proteins,
and cytochromes MtrA, MtrB, and MtrC/OmcA might be involved in transferring
electrons to GO [182]. Therefore, except for the plasma membrane damage and oxidative
stress induction, GFNs can cause apoptosis and/or cell necrosis by direct influencing cell
mitochondrial activity [183, 184].

DNA damage
Due to its small size, high surface area and surface charge, GO may possess significant
genotoxic properties and cause severe DNA damage, for example, chromosomal
fragmentation, DNA strand breakages, point mutations, and oxidative DNA adducts and
alterations [87, 122, 185, 186]. Mutagenesis was observed in mice after intravenous
injection of GO at a dose of 20 mg/kg compared with cyclophosphamide (50 mg/kg), a
classic mutagen [112]. Even if GO cannot enter into the nucleus of a cell, it may still
interact with DNA during mitosis when the nuclear membrane breaks down, which
increases the opportunity for DNA aberrations [87, 147, 187, 188]. The π stacking
interaction between the graphene carbon rings and the hydrophobic DNA base pairs can
make a DNA segment ‘stand up’ or ‘lay on’ the surface of graphene with its helical axis
perpendicular or parallel, respectively. The intermolecular forces severely deform the end
base pairs of DNA, which potentially increases the genotoxicity [189]. GO may also induce
chromosomal fragmentation, DNA adducts and point mutations by promoting oxidative
stress or triggering inflammation through the activation of intracellular signalling
pathways such as MAPK, TGF-β and NF-κB [110, 112, 146]. Graphene and rGO can also
elevate the expression of p53, Rad51, and MOGG1-1, which reflect chromosomal damage,
and decrease the expression of CDK2 and CDK4 by arresting the cell cycle transition from
the G1 to the S phase in various cell lines [112]. DNA damage can not only initiate cancer
development but also possibly threaten the health of the next generation if the mutagenic
potential of GO arises in reproductive cells, which impacts fertility and the health of
offspring [112, 190].

Inflammatory response
GFNs can cause a significant inflammatory response including inflammatory cell
infiltration, pulmonary edema and granuloma formation at high doses via intratracheally
instillation or intravenous administration [30, 49]. Platelets are the important
components in clot formation to attack pathogens and particulate matter during the
inflammatory response, and GO could directly activate platelet-rich thrombi formation to
occlude lung vessels after intravenous injection [98, 191]. A strong inflammatory response
was induced by subcutaneously injection with GO for 21 days, along with the secretion of
key cytokines, including IL-6, IL-12, TNF-α, MCP-1, and IFN-g [34, 192]. GFNs can trigger
an inflammatory response and tissue injury by releasing cytokines and chemokines that
lead to the recruitment of circulating monocytes and stimulating the secretion of Th1/Th2
cytokines and chemokines [124, 193]. Additionally, pristine graphene [193] and rGO [110]
evoke an inflammatory response by binding to toll-like receptors (TLRs) and activating
the NF-κB signalling pathway in cells. The NF-κB signalling cascade is triggered by TLRs
and pro-inflammatory cytokines such as IL-1 and TNF-α. Upon activation, NF-κB shifts
from the cytoplasm to the nucleus, facilitating the binding of degrading IκB and acting as
a transcription factor to synthesize numerous pro-inflammatory cytokines [194]. A
schematic of the signalling pathway of TLR4 and TLR9 activated by GFNs is shown in
Fig. 5.

Fig. 5

A schematic diagram elucidating signalling pathway of TLR4 and TLR9 responsible for GFNs-
induced cytotoxicity. GFNs can be recognized by TLRs, thus activate IKK and IκB by a MyD88-
dependent mechanism, resulting in the release of NF-κB subunits and initiating the translocation
into the nucleus. Thus, pro-inflammatory factors were transcribed and secreted out of nucleus,
modulating the immune responses initiating programmed autophagy, apoptosis and necrosis
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Apoptosis
Apoptosis is defined as the self-destruction of a cell regulated by genes through
complicated programmes [83, 195]. GO and rGO caused apoptosis and inflammation in
mice lungs after inhalation [99], and GFNs also had pro-apoptotic effects in cells [111, 113,
124, 196]. Additionally, graphene and GO physically damaged cell membranes [166],
increased the permeabilization of the outer mitochondrial membrane and changed the
mitochondrial membrane potential; the increased ROS triggered the MAPK and TGF-β
signalling pathways and activated caspase-3 via mitochondrial-dependent apoptotic
cascades, prompting the execution of apoptosis [83, 99]. Similarly, rGO caused apoptosis
at a low dose and an early time point, triggered by the death-receptor and canonical
mitochondrial pathway [110]. Another study showed three different apoptosis pathways by
GFNs: GO led to ROS-dependent apoptosis through direct interaction with protein
receptors and subsequent activation of the B-cell lymphoma-2 (Bcl-2) pathway; GO-
COOH transmitted a passive apoptosis signal to nuclear DNA by binding to protein
receptors and activating a ROS-independent pathway; However, GO-PEI severely
damaged the membranes of T lymphocytes to trigger apoptosis [105, 197].

Autophagy
Autophagy is the process of self-degradation of cellular components and recently
recognized as non-apoptotic cell death [198–200]. Autophagy activation requires
autophagosome formation containing Beclin 1, multiple autophagy-related proteins
(ATG), microtubule-associated protein light chain 3 (LC3) and p62 [201]. Autophagosome
accumulation is associated with exposure to various nanoparticles [202–205], and
autophagy can remove extracellular organisms and destruct the organisms in the cytosol
[206]. GO and GQDs was shown to induce autophagosome accumulation and the
conversion of LC3-I to LC3-II; inhibit the degradation of the autophagic substrate p62
protein [207, 208]. Furthermore, GO can simultaneously trigger TLR4 and TLR9
responses in macrophages [34, 192] and colon cancer cells CT26 [206]. The autophagy
pathway is linked to phagocytosis by TLR signalling in macrophages [206, 209].

Necrosis
Necrosis is an alternate form of cell death induced by inflammatory responses or cellular
injury. The exposure of cells to pristine graphene causes apoptosis and necrosis at high
doses (50 mg/mL) [83]. Reportedly, LDH leakage and the opening of the mitochondrial
permeability transition pore, induced by elevated level of cytoplasmic Ca , lead to
apoptosis/necrosis [210]. GO treatment was revealed to induce macrophagic necrosis by
activating TLR4 signalling and subsequently partly triggering autocrine TNF-α production
[93]. GO combined with CDDP (GO/CDDP) triggered necrosis by decreasing RIP1 and
increasing RIP3 proteins, accompanied with the release of high mobility group B1
(HMGB1) into the cytosol from the nucleus and out of CT26 cells [205, 211, 212].

Epigenetic changes
Epigenetics involve DNA methylation, genomic imprinting, maternal effects, gene
silencing, and RNA editing [213–215]. DNA methylation, which is one of the best-studied
epigenetic modifications, includes phosphorylation, ubiquitination, and ATP-ribosylation
and can lead to chromatin remodelling [197, 216, 217]. A recently paper reported that SL-
GO/FL-GO exposure resulted in global DNA hypermethylation through upregulating
DNMT3B and MBD1 genes; GNP treatment caused hypomethylation by decreasing the
expression of DNMT3B and MBD1 genes [216]. GO could activate the miRNA-360
regulation pathway to suppress the DNA damage-apoptosis signalling cascade by affecting
the component of CEP-1 [218]. Taken together, these data suggest that GFNs could cause
subtle changes in gene expression programming by modulating epigenetic changes.
However, studies of GFNs-induced epigenetic changes are few, and the epigenetic
mechanism caused by GFNs exposure is not fully understood.

To conclude, many studies have discussed representative mechanisms of GFNs toxicity
involving four signalling pathways: TLRs, TGF-β, TNF-α and MAPKs. These four
signalling pathways are correlative and cross-modulatory, making the inflammatory
response, autophagy, apoptosis and other mechanisms independent and yet connected to
each other. Additionally, oxidative stress appears to play the most important role in
activating these signalling pathways. It has been reported that there are intersections of
apoptosis, autophagy and necrosis in the studies of other nanomaterials toxicity, they
inhibit or promote mutually in some conditions. However, the signalling pathways of
GFNs toxicity investigated in papers to date are only a small part of an intricate web, and
the network of signalling pathways needs to be explored in detail in the future.

Data gaps and future studies

Currently, the literature is insufficient to draw conclusions about the potential hazards of
GFNs. Two opposite opinions have begun to emerge: some researchers suggested that
graphene materials are biocompatible in a number of studies focused on biomedical
applications [119, 154, 162, 219], and other studies reported adverse biological responses
and cytotoxicity [32, 118, 135, 138, 192]. These inconsistent results might have been
caused by several factors, including the different research groups, various cellular or
animal models, and varying physicochemical characterizations of GFNs. When GFNs are
explored for in vivo applications in the human body or some other biomedical
applications, biocompatibility must be considered, and more detailed and accurate studies
of GFNs toxicity are needed.

First, detailed physicochemical characterization is imperative in all future studies of GFNs
toxicity. In the experiments, feature descriptions of GFNs should include their size,
morphology, surface area, charge, surface modifications, purity, and agglomeration [88,
141, 148, 162]. Because these physicochemical factors largely influence the toxicity and
biocompatibility of GFNs, single-factor experimental designs and the exclusion of other
interfering factors should be considered. Details of the fabrication process should also be
provided because the formed oxidative debris could largely alter the surface structure of
graphene and GO during functionalization [151]. Importantly, a single, universal method
needs to be established in graphene technology, which will allow for better comparison of
data from different studies or different laboratories.

Second, different observational criteria, parameters and selection of experimental
methods might induce large inter-laboratory variations [220, 221]. For example, the MTT
assay always fails to accurately predict graphene toxicity because the spontaneous
reduction results in a false positive signal. Therefore, appropriate alternative assessments
should be utilized, such as the water-soluble tetrazolium salt reagent (WST-8), ROS assay,
and trypan blue exclusion test [106, 222]. Additionally, the comet assay often shows
higher levels of DNA damage than the micronucleus assay because the former measures
the repairable injury and the latter measures the gene damage that remains after cell
division [159, 223]. Therefore, caution is required in choosing the most appropriate assay
to evaluate the toxicity of graphene materials to avoid false-positive results.

Third, the selection of cell lines is of vital importance because cancer cell lines tend to be
sensitive or resistant depending upon their genetic background. The same graphene
nanoparticles can cause different reactions depending on their various cells origins.
Suitable cell lines with good stability must be used to avoid false positive or negative
results. Primary cells derived from humans or animals can better simulate the health
conditions of humans. A large amount of primary cells have been utilized to test the
toxicity of other nanomaterials [224–228], but the culturing of primary cells is extremely
rare in the experiments with GFNs to date [210, 229]. Various cell experiments combined
with primary cells should be performed to comprehensively evaluate the physicochemical
properties and toxicity of GFNs.

Fourth, the administration route of GFNs plays a very important role in toxicity studies,
and different delivery methods will result in different toxicological reactions [32, 53].
Thus, the route and period of exposure should be carefully chosen according to the aim of
the study. Nasal drug delivery is often used to study the neurotoxicity of nanomaterials
[230, 231], but this administration method has rarely been applied in the testing of GFNs
toxicity. Toxicological studies of GFNs in the nervous system are rare, and the mechanism
is unclear and needs to be studied further in the future. Recent toxicokinetic studies
involving the absorption, distribution, metabolism, accumulation, and excretion of GFNs
through different exposure routes have yielded some results but are far from sufficient to
clarify the internal complex mechanisms. For instance, further studies are needed to
understand the specific molecular mechanisms of GFNs passing through the physiological
barriers and the amount of accumulation or the excretion period of GFNs in tissues. In
addition, given the increased exposure of humans to GFNs, the assessment of systemic
toxicity in the human body is indispensable in future studies.

Fifth, another important issue requiring attention is the long-term fate of GFNs after
entering the body or being taken up by cells. Most recent studies have consisted of short-
term toxicity assessments [89, 232], and long-term toxic injury has not received much
attention since the widespread application of GFNs in 2008. Moreover, a functionalized
graphene surface can improve its biocompatibility, but the long-term stability of the
surface coatings should be considered [233]. If the surface coatings eventually break
down, their toxicity may be significantly different from the short-term exposure results.
Extended studies are needed to determine if longer treatment times influence the
nanotoxic potential of GFNs.

Sixth, more specific signalling pathways in the mechanism of GFNs toxicity need to be
discovered and elucidated. Currently, several typical toxicity mechanisms of GFNs have
been illustrated and widely accepted, such as oxidative stress, apoptosis, and autophagy.
However, these mechanisms have only been described in general terms, and the specific
signalling pathways within these mechanisms need to be investigated in detail. The
signalling pathways involved in the toxicity of other nanomaterials may also be relevant to
the study of GFNs. Therefore, more signalling pathways should be detected in future
research. For instance, nano-epigenetics has been considered in numerous studies of
nanomaterials, which is also helpful in assessing the limited toxicity and side effects of
GFNs. Recent studies have shown that GFNs could cause epigenetic and genomic changes
that might stimulate physical toxicity and carcinogenicity [234]. GFNs have high surface
areas, smooth continuous surfaces and bio-persistence, similar to the properties of
tumorigenic solid-state implants. It is unknown whether GFNs have the potential to
induce foreign body sarcomas, and definitive studies of tumour potentialities or risks of
graphene should therefore be conducted as soon as possible.

Conclusions

In the past few years, GFNs have been widely utilized in a wide range of technological and
biomedical fields. Currently, most experiments have focused on the toxicity of GFNs in the
lungs and livers. Therefore, studies of brain injury or neurotoxicity deserve more attention
in the future. Many experiments have shown that GFNs have toxic side effects in many
biological applications, but the in-depth study of toxicity mechanisms is urgently needed.
In addition, contrasting results regarding the toxicity of GFNs need to be addressed by
effective experimental methods and systematic studies. This review provides an overview
of the toxicity of GFNs by summarizing the toxicokinetics, toxicity mechanisms and
influencing factors and aimed to provide information to facilitate thorough research on
the in vitro and in vivo haemo- and biocompatibility of GFNs in the future. This review
will help address safety concerns before the clinical and therapeutic applications of GFNs,
which will be important for further development of GFNs in biological applications.

Abbreviations

Alveolar macrophages

Blood-brain barrier

Blood-epididymis barriers

Blood-testis barrier

Complement receptor

Fcg receptor

Few-layer graphene

Graphene family nanomaterials

Graphene nanosheets

Graphene oxide

Carboxylated graphene oxide

GO-dextran

GO-molecular beacon

Aminated GO

Poly(acrylic acid)-functionalized GO

Poly(acrylamide)-functionalized GO

PEGylated GO derivatives

GO-polyethylenimine

Graphene quantum dots

Glutathione peroxidase

Carboxyl graphene

Lactate and dehydrogenase

Matrix-assisted laser desorption/ionization

Mitogen-activated protein kinase

Malondialdehyde

Macrophage

Mannose receptor

Mass spectrometry imaging

Rat pheochromocytoma cells

Protein-coated graphene oxide nanoparticles

PEGylated reduced graphene oxide

Reticuloendothelial system

Reduced graphene oxide

Reactive oxygen species

Superoxide dismutase

Toll-like receptor
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